POWERS AND ROOTS

Pearson Edexcel - Thursday 4 June 2020 - Paper 2 (Calculator) Foundation Tier

1.

5 Here is a list of numbers.

3 4 9 18 27 30 36

From the numbers in the list, write down a cube number.

(Total for Question 5 is 1 mark)

Pearson Edexcel - Monday 8 June 2020 - Paper 3 (Calculator) Foundation Tier

2.

4 Work out 2.5²

(Total for Question 4 is 1 mark)

Pearson Edexcel - Tuesday 21 May 2019 - Paper 1 (Non-Calculator) Foundation Tier

3.

15 (a) Write down the value of $\sqrt{64}$

(b) Work out the value of 5^3

(1)

(1)

(Total for Question 15 is 2 marks)

Pearson Edexcel - Tuesday 11 June 2019 - Paper 3 (Calculator) Foundation Tier

4.

 4
 Here is a list of numbers.

 4
 6
 9
 10
 15
 27
 30
 40

From the list, write down all the numbers that are powers of 3

(Total for Question 4 is 1 mark)

Pearson Edexcel - Thursday 8 November 2018 - Paper 2 (Calculator) Foundation Tier

5.

2 Write down a square number that is also an odd number.

(Total for Question 2 is 1 mark)

6.

4 Work out the cube root of 64

(Total for Question 4 is 1 mark)

Pearson Edexcel - Monday 12 November 2018 - Paper 3 (Calculator) Foundation Tier

7.

3 Find $\sqrt{1.44}$

(Total for Question 3 is 1 mark)

Pearson Edexcel - Thursday 7 June 2018 - Paper 2 (Calculator) Foundation Tier

8.

3 Work out the value of 3⁵

(Total for Question 3 is 1 mark)

Pearson Edexcel - Tuesday 12 June 2018 - Paper 3 (Calculator) Foundation Tier

9.

8 (a) Find the value of $\sqrt{1.44 \times 3.61}$

(b) Find the value of $(3.54 - 0.96)^2 - 4.096$

(2)

(1)

(Total for Question 8 is 3 marks)

Pearson Edexcel – Specimen 2 - Paper 1 (Non-Calculator) Foundation Tier

10. 3 (a) Work out 84 ÷ 3 (1) (b) Work out 0.17 × 6000 (1) (c) Work out (-2)³ (1) (Total for Question 3 is 3 marks)

Pearson Edexcel – Specimen 2 - Paper 2 (Calculator) Foundation Tier

11.

4 Find the value of 5^4

(Total for Question 4 is 1 mark)

Pearson Edexcel – Specimen 2 - Paper 3 (Calculator) Foundation Tier

12.

9 (a) Find the value of $\sqrt[3]{97.336}$

(1)

(b) Find the value of $\sqrt{7.29} + (2.3 - 0.85)^2$

(2)

(Total for Question 9 is 3 marks)

Pearson Edexcel – Specimen 1 - Paper 1 (Non-Calculator) Foundation Tier

13.

5 Work out $(-3)^3$

(Total for Question 5 is 1 mark)

Pearson Edexcel – Specimen 1 - Paper 2 (Calculator) Foundation Tier

14. **15** (a) Work out $\frac{4}{5}$ of 210 cm.

(b) Work out $(6-2.5)^2 + \sqrt{9.34-2.58}$

(2)

(1)

..... cm

(Total for Question 15 is 3 marks)

Pearson Edexcel – Specimen 1 - Paper 3 (Calculator) Foundation Tier

15.

11 The same number is missing from each box.

(a) Find the missing number.

(1)

(1)

(Total for Question 11 is 2 marks)

(b) Work out 4^4

16.

12 Here are two numbers.

29 37

Nadia says both of these numbers can be written as the sum of two square numbers.

Is Nadia correct? You must show how you get your answer.

(Total for Question 12 is 3 marks)

OCR - Tuesday 03 November 2020- Morning - Paper 1 (Calculator) Foundation Tier

17.

10 Nadia thinks of a number. She finds the square root and then divides by 5. Her answer is 20.

What number is she thinking of?

Country	Barrels of oil produced per day
USA	1.17 × 10 ⁷
China	3.98×10^{6}
UK	9.39×10^{5}
Cameroon	9.32×10^{4}
Japan	3.92×10^{3}

17 The table below shows the number of barrels of oil produced per day by some countries.

(a) Write the number of barrels of oil produced per day by Cameroon as an ordinary number.

(b) How many more barrels of oil per day did China produce than the UK? Give your answer in standard form, correct to 3 significant figures.

(b)[4]

(c) Jamal says the USA produced approximately three times more barrels of oil than Japan.

Is he correct? Show how you decide.

18.

OCR Thursday 05 November 2020- Morning (Non-Calculator) Foundation Tier

OCR November 09 November 2020- Morning (Calculator) Foundation Tier

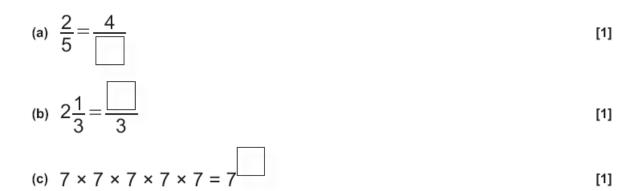
20.

12 (a) Complete the power of 2 for each statement by writing the missing value in the box.

(i)
$$2^3 \times 2^3 = 2^{-1}$$
 [1]

(ii)
$$\frac{1}{32} = 2^{-1}$$
 [1]

(b) $2 \times 2^{y} = 1$.


Find the value of y.

(b) y =[2]

OCR Thursday 07 November 2019- Morning (Non-Calculator) Foundation Tier

21.

3 Complete each statement by writing the missing value in the box.

OCR Monday 11 November 2019 – Afternoon (Calculator) Foundation Tier							
22.	12 (a)	Find the va	alue of				
		(i) ³ √216	,				
					(a)(i)		[1]
		(ii) 2 ⁸ .					
					(ii)		[1]
	(b)	The cube of	of 3 is added to	the square root o	of 7.		
		Put a ring a	around the cor	rect statement.			
			$\sqrt[3]{3} + 7^2$	$3^3 + 7^2$	$3^3 + \sqrt{7}$	$\sqrt[3]{3} + \sqrt{7}$	[1]
OCR Tues	day 21 I	May 2019 –	Morning (Ca	lculator) Founda	ation Tier		
23.							
2	(a) \	Vrite down	each of the fo	bllowing.			
	((i) An odd	number.				
					(a)(i)		[1]
	(i	i) A factor	of 25.				
					(ii)		[1]
	(ii	ii) A prime	number betv	veen 20 and 30.			
					()		F43
	(h) (bow that F	E io net o com	loro purchar	(iii)		
	(u) 3	Show that S	o is not a squ	uare number.			[2]

14 (a) (i) Round 356 to the nearest ten.

		(a)(i)	[1]
(ii)	Round 356.052 to 1 decimal place.		
		(ii)	[1]
(b) Fin	d the value of y in each of the following.		
(i)	$3 \times 3 \times 3 \times 3 = 3^{y}$		
		(b)(i)	<i>y</i> =[1]
(ii)	$6^3 \times 6^5 = 6^{\gamma}$		
		(ii)	y =[1]

OCR Thursday 6 June 2019 – Morning (Non-Calculator) Foundation Tier

25.

5 (a) Complete the following.

(i)	$5^2 = \dots$	[1]
(ii)	3√64 =	[1]

(b) Work out $2^3 \times \sqrt{49}$.

(b)[2]

OCR Tuesday 6 November 2018 – Morning (Calculator) Foundation Tier

26.

- 4 (a) Write down each of the following.
 - (i) An even number.

		(a)(i)	[1]
(ii)	A factor of 25.		
		<i>a</i> n	
		(ii)	[1]
(iii)	A prime number between 10 and 20.		
		(iii)	
(iv)	A cube number.		
		(iv)	[1]

(b) Find the highest common factor (HCF) of 35 and 91.

(b)[2]

OCR Thursday 8 November 2018 - Morning (Non-Calculator) Foundation Tier

27.

7 (a) Write down the value of $\sqrt[3]{27}$.

(b) Work out 7².

(c) Write 6⁻¹ as a fraction.

28.

13 (a) Write 0.00316 in standard form.

(b) Work out.

$$2\times 10^2 \times 4 \times 10^5$$

Give your answer in standard form.

OCR Monday 12 November 2018 – Morning (Calculator) Foundation Tier

29.

4 Tia thinks of a number. She finds the square root and subtracts 4. Her answer is 1.

What number is she thinking of?

30.

.....[2]

13 (a) Work out 24.

(a)[2]

(b) Find the value of n.

 $100 = 4 \times 5^{n}$

OCR Monday 24 May 2018 - Morning (Calculator) Foundation Tier

31.

Here is a list of numbers. 1 2 8 5 12 6 (a) From this list, write down (i) the odd number, (a)(i)[1] (ii) the cube number. (ii)[1] (b) Using the same list of numbers, work out (i) the median, (b)(i)[1] (ii) the range.

32.

4 Patrick writes down a number.

He says

If I find the square root of that number and then add 15, I get 27.

What number did Patrick write down?

.....[2]

OCR Thursday 7 June 2018 – Morning (Non Calculator) Foundation Tier					
33.					
3	(a)	Work out.			
		(i) 10 ³			
		(a)(i)[(ii) 9(8 – 3 × 2)	[2]		
		(ii)[[2]		
	(b)	Put brackets into this sum so that the answer is correct.			
		1 + 2 × 3 + 5 = 17	[1]		

OCR Tuesday 12 June 2018– Morning (Calculator) Foundation Tier							
34.							
2	(a) V	Vrite down.					
	(i) 3091 round	ded to the near	est hundre	ed		
					(a)(i)		[1]
	(i	i) 3% as a de	ecimal				
					(11)		[1]
	(ii	i) the cube read to the cube read to	oot of 27				
					(11)		[1]
	(b) (complete the s	tatement below	/ using a n	umber fron	n this list.	
		-2	0	-6	6		
					-5 > .		[1]
	(c) V	Vrite the follow	ing numbers in	order of s	ize, smalle	est first.	
			0.5				
		0.1	0.0	0.00	0.111	0.10	
			smallest	•••••			[2]

35.

(a)
$$\frac{3.6}{1.2 - 0.3}$$

(a)[1]

(b) $\sqrt{12.25^3}$ Give your answer correct to 1 decimal place.

(b)[2]

20 (a) Show that $a^5 \times (a^3)^2$ can be expressed as a^{11} .

(b) Write
$$\frac{1}{125} \times 25^9$$
 as a power of 5.

OCR Thursday 2 November 2017– Morning (Calculator) Foundation Tier

37.

•					
3	(a)	Roi	und 7874 to		
		(i)	the nearest hundred,		
				(a)(i)	[1]
		(ii)	1 significant figure.		
				(ii)	[1]
	(b)	Fin	d the value of <i>x</i> .		
			$3^5 \times 3^2 = 3^x$		

(b) x =[1]

38. 7	(a)	Work out.	
		(i) $1+4 \div 2$	
		(a)(i)(a)(i)	[1]
		(ii)	[1]
	(b)) Evaluate.	
		(i) 2 ⁵	
		(b)(i)	[1]
	(c)	(ii)	[1]
	(0)	$\frac{23.1 \times 3.9}{8.12}$	

OCR Monday 6 November 2017– Morning (Calculator) Foundation Tier

(c)[3]

OCR Monday 6 November 2017– Morning (Calculator) Foundation Tier

39.

17 Andrew is thinking of a number.

- It is between 1 and 150.
- It is one more than a square number.
- It is three less than a cube number.
- It is not a prime number.

What is Andrew's number? You must show all your reasoning.

Pearson Edexcel – Sample Papers - Paper 2 (Calculator) Foundation Tier

40.

3 Here is a list of numbers

4 7 9 25 27 31 64

From the numbers in the list, write down a cube number.

(Total for Question 3 is 1 mark)

41.

4 Find the value of $(2.8 - 0.45)^2 + \sqrt[3]{5.832}$

(Total for Question 4 is 2 marks)

OCR Wednesday 8 November 2017– Morning (Calculator) Foundation Tier

42.

- 4 (a) Fill in each missing number.
 - (i) 24 = 36 [1]
 - (ii) √..... = 16 [1]
 - (b) The length of a line is 10.4 cm, correct to 1 decimal place.

Write down the shortest possible length of the line.

(b) cm [1]

OCR Thursday 8 June 2017 – Morning (Non - Calculator) Foundation Tier

43.

- 8 (a) Evaluate.
 - (i) √121

(ii) 4⁻²

(a)(i) [1]

(ii)[1]

(b) Work out.

 $(9 - 3 \times 2)^2$

(b)		[2]
-----	--	-----

(c) Fill in the power. $5^{----}=125$ [1]

OCR Sample Question Paper 3 – Morning/Afternoon (Calculator) Foundation Tier

44.

10 Calculate.

(a) √3136

(a)[1]

(b) $\sqrt[4]{625}$

(b)[1]

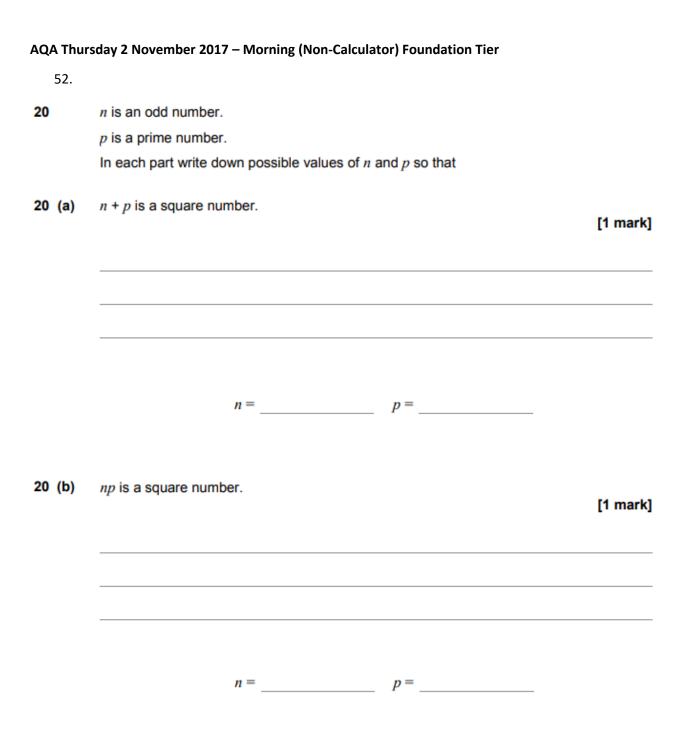
(c) 5⁻²

(c)[1]

AC	A Th	ursday 4 June 2020 – Morning (Calculator) Foundation Tier	
	45.		
8	(a)	Write down an even whole number that is also a square number.	[1 mark]
		Answer	_
8	(b)	Write down all the cube numbers between 100 and 400	[2 marks]
		Answer	-
8	(c)	Write down two numbers that are multiples of 3 and	
		multiply to make 216	[1 mark]
		Answer and	

AQA Thu	rsday 6 June	2019 – Morning (Calculator) Found	ation Tier		
46.						
1	Circle the number that is one less than a cube number.					[1 mark]
		20	22	24	26	
	rsday 11 Jun	e 2019 – Morning	(Calculator) Foun	dation Tier		
47.						
20	Solve	x ² = 196			I	2 marks]
		Answer				

AQA Tuesday 6 November 2018 – Morning (Non-Calculator) Foundation Tier


4	8

29	$\sqrt{6^2 + 8^2} = \sqrt[3]{125a}$	3				
	Work out the value	of a.				
						[4 marks]
	A	nswer				
AQA Mo	nday 12 November 20	18 – Morning (Cal	culator) Foundati	on Tier		
49.						
11	Circle the cube number.					
					[1 mark]	
	9	10 000	333	729		
) Foundation Tio			
	rsday 7 June 2018 – M	iorning (Calculator) Foundation Tie	ſ		
50.						
3	What is 625 as a p	ower of 5 ?				
	Circle your answer					[1 mark]
						[
	2		-		405	
	5 ³	5 ⁴	5 ⁵		5 ¹²⁵	

AQA Thursday 7 June 2018 – Morning (Calculator) Foundation Tier

51.

5	Work out the value of	$3^6 - \sqrt{841}$	[2 marks]
	Answer		

 $\left(\sqrt{3}\right)^2 \times \left(\sqrt{2}\right)^2$ 29 Work out the value of [2 marks] Answer AQA Monday 6 November 2017 – Morning (Calculator) Foundation Tier 54. 2 Which of these numbers is half of a square number? Circle your answer. [1 mark] 1 2 3 4 55. $\sqrt{7.5^2 + 18^2}$ 12 Work out Circle your answer. [1 mark] 19.5 25.5 331.5 380.25

53.

AQA Wednesday 8 November 2017 – Morning (Calculator) Foundation Tier								
56.								
1	Circle the cube number.							
					[1 mark]			
	100	1000	10 000	100 000				
AQA We	dnesday 8 November 2017 – N	Aorning (Calculate	or) Foundation Tier					
57.								
23	Show that 268 can be written as the	ne sum of a power of						
	[2 marks]							
	Answer							
Answer								
AQA Tuesday 13 June 2017 Morning– Morning (Calculator) Foundation Tier								
58.								
4	Circle the value of 2 ⁵				[1 mark]			
	10	25	32	64				

AQA Sample Paper 3– Morning (Calculator) Foundation Tier							
59.							
3	Which of these is a cube number? Circle your answer.						
	3	9	27	100			
AQA Sample Paper 3– Morning (Calculator) Foundation Tier							
60.							
18	Work out the square root of 100 million.						
	Circle your answer.				[1 mark]		
					[1 mark]		
	1000	10 000	100 000	1 000 000			